行程问题在行测数量关系的考试当中还是比较常见的,那么什么是行程问题呢,顾名思义就是研究跟行程有关的问题,更加确切的说是研究路程速度还有时间他们三者之间的关系,可以用一个公式来表示,路程=速度×时间,也就是s=vt。相信大家对这个公式也不陌生,在小学的数学课堂当中肯定也接触过。那么在数量关系当中我们碰到了行程问题要了解一些什么又如何去较快解决这类问题呢。
主要是要掌握一些基本的只是在掌握基本知识的基础上配合一些方法来较快地解决我们的行程问题。
第一、就是要掌握我们的基本公式s=vt。
1、小张将带领三位专家到当地B单位调研,距离B单位1.44千米处设有地铁站出口。调研工作于上午9点开始,他们需要提前10分钟到达B单位,则小张应通知专家最晚几点一起从地铁口出发,步行前往B单位?(假设小张和专家的步行速度均为1.2米/秒)
A.8点26分 B.8点30分 C.8点36分 D.8点40分
【答案】B。解析:根据s=vt我们发现我们要求时间,已知地铁口跟单位路程是1440米,小张跟专家的速度也知道均为1.2米每秒,从地铁口步行到 B 单位需要 1440÷1.2=1200 秒=20 分钟, 又需要提前 10 分钟到达 B 单位,则最晚需要在 8 点 30 分从地铁口出发,选择 B。
这是对s=vt公式的基本应用,相信大家也能够掌握。
第二、我们要掌握的就是关于s=vt,他们三者之间的正反比关系
当s一定时,vt乘积为定值,那么v越大t就越小,vt之间成反比。
当v一定时,s与t的商为定值,那么s变大t也变大,st之间成正比。
当t一定时,s与v的商为定值,那么s变大v也变大,sv之间成正比。
我们可以用正反比来进行求解。
2、甲乙两辆车从 A 地驶往 90 公里外的 B 地,两车的速度比为 5∶6。甲车于上午 10 点半出发,乙车于 10 点 40 分出发,最终乙车比甲车早 2 分钟到达 B 地。问两车的时速相差多少千米/小时?
A.10 B.12 C.12.5 D.15
【答案】D。解析:根据题意,我们发现路程时不变的,所以速度与时间成反比,甲乙两车的速度比为 5∶6,因此两车从 A 到 B 所用的时间比为 6∶5,乙比甲晚出发 10 分钟,且比甲早 2 分钟到达,因此全程乙比甲 快了 12 分钟,即一份时间为 12 分钟,因此全程乙用时 12×5=60 分钟=1 小时,乙的速度为 90 千米/小时,因此两车速度之差为15千米/小时。
希望大家掌握这两种方法并多加练习,掌握好行程问题。